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SUMMARY 
Large-scale phenotyping of methane emissions in dairy cows is necessary for genetic selection, 

yet gold-standard methods such as respiration chambers and the SF₆ technique are expensive and 
impractical for broader implementation. In this study, 50 Arcoflex (Arcoflex International Pty Ltd) 
sniffer sensors were installed one per bay in a herringbone dairy facility, with one per day. Methane 
concentrations (100 to 5,000 ppm) were recorded every 10 seconds between March and November 
2024. Data were gathered from 532 genotyped cows during both morning and afternoon milkings, 
with an average of 227 visits per cow. Methane concentration measurements were summarised with 
two methods: (1) an arithmetic mean of all observations per visit, and (2) a “peak” average, defined 
as data points that exceeded their immediate neighbours. Univariate linear mixed models in ASReml 
were then applied to estimate heritability (h²) and repeatability (r). Overall, arithmetic means per 
visit averaged 445 ppm, whereas peak-based visits averaged 639 ppm. The highest heritability 
(0.12±0.02) was estimated for peak-based measurements at the per-visit level, while the highest 
repeatability (0.38±0.01) occurred when peak data were aggregated weekly. While these findings 
highlight the potential of sniffer sensors for large-scale methane phenotyping, more data from 
additional herds and farm settings are needed to further validate this approach. 

 
INTRODUCTION 

Methane is a potent greenhouse gas, and its accurate measurement is essential for developing 
effective mitigation strategies to address climate change. Notably, enteric fermentation in ruminants, 
contributes approximately of 6% of the entire global greenhouse gas emissions (Beauchemin et al. 
2020), highlighting the importance of targeting this source for emission reductions. While gold 
standard methods such as respiration chambers and the SF6 tracer technique provide high-quality 
data (Deighton et al. 2014), their high costs and labour-intensive nature limit their feasibility for 
large-scale application which is required for reliable genetic selection. Alternatively, sniffer sensors 
installed in milking parlours offer a cost-effective, though spot-sampling, approach to monitor 
methane emissions under practical farm conditions. This study aims to evaluate the repeatability and 
heritability of sniffer-based measurements under various scenarios to identify the most reliable 
method for large-scale methane monitoring in herringbone Australian dairy operations. 

 
MATERIALS AND METHODS 

Sensor Setup and Data Collection. Fifty Arcoflex sensors (Arcoflex International Pty Ltd) 
were installed in a herringbone dairy, with one per feed bin (Ellinbank SmartFarm, Victoria, 
Australia). The heated electrode sensors continuously recorded methane concentrations in parts per 
million (ppm) at ten-second intervals while cows were being milked. The sensors function within a 
measurement range of 100 to 5,000 ppm. Data were extracted using Arcoflex Data Exporter V1.7.1.0 
from March 1 to November 30, 2024. 

Each side of the milking parlour (left and right) had 25 bays with individual feed bins; once 
milking concluded on a side, the bins were raised, allowing all cows in those 25 bays to exit 
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simultaneously. This setup ensured a clear pattern of entry and exit that facilitated consistent data 
capture throughout the study period. 

For genomic estimation, we utilised the XST-74K genotype set. This set comprises 
approximately 74,000 single nucleotide polymorphisms (SNPs) and is a combination of AVR’s 
(Agriculture Victoria Research) custom DairyBio XT-50K chip and the standard Illumina Bovine 
50K chip. The integration of these two chips enhances the density and coverage of genomic data, 
providing a more robust foundation for prediction models (Van Den Berg et al. 2024). 

Matching Methane Records to Individual Cows. Because the Arcoflex sensors were not 
linked to cow radio-frequency identification (RFID), a unique system was developed to associate 
methane concentration (MeC) readings with individual cows. The milking system captured each 
cow’s National ID and milking order, as animals entered and exited each bay. These data were used 
alongside information from the milking parlour’s gate system, which recorded the presence or 
absence of cows in the bays. By aligning the sequence in which cows entered the bays (entry order) 
with gate status (confirming occupancy), a unique identifier was generated for each cow during each 
milking session. This identifier provided a reliable link between the milk production data and the 
methane concentration measurements once the timestamps from both datasets were synchronised. 
Cross-checking these matched records ensured that methane concentration readings were correctly 
attributed to the right cow. 

Data Cleaning. Prior to analysis, any cows receiving a methane mitigating feed additive(s) were 
excluded from the dataset. Records were also removed if the cow’s days in milk (DIM) exceeded 
450. Sensor records of 0 ppm were discarded because these often occur when an animal’s head 
position is too far away from the sensor or when ambient methane concentrations are too low to be 
detected. Cows were milked twice daily, in the morning and afternoon, and recorded visits that were 
shorter than 2.5 minutes or longer than 25 minutes were also excluded (due to uncertainty of correct 
identified cow). The remaining visits had a minimum duration of 2.6 minutes, a maximum of 25 
minutes, and a mean of 14.2 minutes (median 13.8 minutes). Although the sensors can measure up 
to 5,000 ppm, preliminary analyses indicated that values exceeding 3,000 ppm were rare and 
significantly skewed the distribution, therefore values above 3,000 ppm were removed. 

Overall, 127,669 valid records remained (79% of total observations), with individual cows 
having a minimum of 1 visit, a maximum of 452 visits, and an average of 227 visits (median 226), 
over an average of 138 days. After all exclusions, data from 532 cows from 74 sires remained in the 
final dataset.  

Statistical analysis. To determine the most repeatable time frame for MeC, 1,260 scenarios were 
created to examine repeatability estimates and compare Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) values. Each scenario varied in two ways: (i) window length 
of recording (from a minimum of 100 seconds to a maximum of 500 seconds) and (ii) start time of 
recording (ranging from 10 seconds to 1500 seconds after milking began). The response variable 
was the average MeC recorded per visit. A linear mixed-effects model was then specified, with 
milking session (morning vs. afternoon), bay number, and polynomial for both cow age (months) 
and days in milk (DIM) as fixed effects, and individual cows fitted as a random effect to account for 
repeated measurements within cows. Model estimation employed restricted maximum likelihood 
(REML) using the nlme package (Pinheiro et al. 2024) in RStudio (R Core Team 2023). 

Based on the highest repeatability and lowest AIC and BIC values, the optimal interval was 
identified as second 90 to second 410, spanning 320 seconds. All subsequent analyses therefore 
focused on measurements collected within this time window, and data outside of it were excluded. 
Two averaging methods were then defined for further investigation: (1) calculating the simple 
arithmetic mean of all data points within the selected interval, and (2) identifying a “peak” within 
each visit (an observation exceeding its immediate neighbours) and computing the average of these. 
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Heritability and repeatability for each methane trait (average and peak average) were estimated 
using univariate linear mixed models in ASReml 4.2.1 (Gilmour et al. 2021). The general model is 
described by: 

y = Xb + Zu + Wc + e,      (1) 
where y is the vector of the response variable (either the average MeC or the average of MeC peaks). 
The vector b contains the fixed effects, which include the overall mean, bay number, milking 
session, and polynomial for both cow age (months) and DIM. In this framework, u represents the 
random additive genetic effects for each animal (u ~N(0, Aσ𝒂𝒂𝟐𝟐)) where A is the relationship matrix 
derived from the genotypes of 532 animals. The vector c denotes the random permanent 
environmental effects (c ~N(0, Iσ𝒄𝒄𝟐𝟐)) and e is the random residual effect (e ~N(0,  Iσ𝒆𝒆𝟐𝟐)). Matrices 
X, Z, and W link observations to the corresponding fixed or random effects.  

When data were summarised on a daily or weekly basis, the variables for bay number and 
milking session were removed from the model. This adjustment was made because the daily or 
weekly aggregated data no longer allowed for meaningful differentiation by bay or milking session.  

Narrow-sense heritability (h2) was calculated as the ratio of the additive genetic variance (σ𝒆𝒆𝟐𝟐) to 
the total phenotypic variance (σ𝒂𝒂𝟐𝟐+σ𝒄𝒄𝟐𝟐+σ𝒆𝒆𝟐𝟐). Repeatability was estimated by dividing the sum of the 
additive genetic (σ𝒆𝒆𝟐𝟐) and permanent environmental (σ𝒆𝒆𝟐𝟐) variances by the total phenotypic variance.  
 
RESULTS AND DISCUSSION 

Average-based measures recorded mean values of around 445 ppm, with SD ranging from 122 
to 217 ppm (Table 1). By contrast, peak-based measures had higher means, approximately 639 ppm, 
and displayed larger SD (202 to 364 ppm), indicating greater variability in maximum emissions. In 
a study, Van Breukelen et al. (2022) reported a mean of 367 ppm, which is considerably lower than 
the 444 ppm observed here. This discrepancy may reflect differences in sensor technology and farm 
practices (e.g., automated milking systems versus herringbone). Additionally, Van Breukelen et al. 
(2022) attributed some of their lower measurements to sensor drift toward zero which was not 
observed in our data as the Arcoflex sensors do not detect values below 100 ppm.  

The heritability estimates ranged from 0.03 to 0.12, depending on how visits were defined, with 
the highest value (0.12) achieved when peaks were averaged within each visit and the model 
included bay, milking session (morning vs. afternoon), DIM, and cow age as fixed effects (Table 1). 
This aligns relatively well with the 0.13 heritability reported by Van Breukelen et al. (2022) for 
mean MeC per visit. However, whereas Van Breukelen et al. (2022) observed a considerable 
increase in heritability (up to 0.32) when data were aggregated weekly, our analysis showed a 
decrease to 0.05. One likely explanation is the differing recording systems of automated milking 
systems (AMS) often rely on a single sensor for the entire herd, making the effect of “bay” irrelevant, 
whereas our herringbone setup employs multiple sensors, one per bay. Although 532 cows were 
phenotyped in this study, this sample size may not fully capture the genetic variation present in the 
broader population, suggesting future work should encompass more animals and potentially multiple 
herds to strengthen parameter estimates. While the bay effect was significant (P < 0.05), we chose 
not to pre-adjust for it prior to aggregating daily or weekly measurements. Instead, we accounted 
for bay effects directly in the model, which was feasible only at the per-visit level. Furthermore, in 
a separate analysis (unpublished), we observed that bays located closer to the shed entrance, where 
they were more exposed to wind, had lower repeatability than bays situated farther inside the facility. 
Consequently, pooling observations over time may have introduced additional, unaccounted-for 
variability at the bay level, lowering our heritability estimates for aggregated traits.  
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Table 1. Mean, variance components, repeatability, and heritability of MeC. VA is additive 
genetic variance, VPE is permanent environment variance, and VP is phenotypic variance 
 

Trait Mean±SD VA VPE VP h2±SE r±SE 
Average 445±217 3484 3770 7254 0.09±0.02 0.19±0.01 
Average of peaks 639±364 13442 9437 89213 0.12±0.02 0.2±0.01 
Daily Average 444±188 1671 4180 35617 0.05±0.01 0.17±0.00 
Daily Average of Peak 637±314 6480 10639 98669 0.07±0.01 0.17±0.01 
Weekly Average 445±122 347 4652 14376 0.03±0.02 0.35±0.01 
Weekly Average of Peaks 638±202 1888 12582 38501 0.05±0.02 0.38±0.01 

 
The repeatability estimates in this study increased when methane measurements were aggregated 

over longer periods, reflecting how weekly averages can reduce day-to-day fluctuations in the data. 
Although the weekly repeatability values we obtained were lower than some previously published 
findings, the general pattern aligns with the results of Van Breukelen et al. (2022), who observed a 
repeatability of 0.30 per visit and 0.68 for weekly means. The rise in repeatability with temporal 
aggregation highlights the benefit of smoothing out short-term noise that can arise from factors such 
as cow movement or sensor proximity. However, in our herringbone system, the effect of bay-
specific variability could no longer be accounted for once measurements were collapsed into weekly 
averages, potentially limiting the full advantage of data aggregation. In future work, we plan to 
correct for bay effects before aggregation to minimise unaccounted variability and improve the 
accuracy of weekly methane estimates. 
 
CONCLUSION 

This study revealed higher heritability and repeatability for peak-based measurements than for 
arithmetic means, suggesting that peaks may better capture genetic variation in methane output. 
From a practical standpoint, it remains to be established whether peak- or average-based approaches 
align more closely with total daily methane production and thus offer greater potential for mitigation 
through genetic selection. Overall, while these findings indicate that sniffer sensors can supply 
practical and sufficiently robust data, additional records from more cows and different herds are 
needed to further validate and refine methane measurement approaches in dairy operations.  
 
ACKNOWLEDGEMENTS 

I thank Majid Khansefid for his valuable advice on the statistical analyses and Iona MacLeod for 
providing the genotypic data used in this study. 
 
REFERENCES 
Beauchemin K.A., Ungerfeld E.M., Eckard R.J. and Wang M., (2020) Animal 14: s2.  
Deighton M.H., Williams S.R.O., Hannah, M.C., et al., (2014) Anim. Feed Sci. Tech. 197: 47. 
Gilmour A.R., Gogel B.J., Cullis B.R., Welham S.J. and Thompson R. (2021) ASReml User Guide 

Release 4.2 Functional Specification. VSN International Ltd, Hemel Hempstead, HP2 4TP, 
UK. 

Pinheiro J., Bates D. and R Core Team, (2024) nlme: Linear and Nonlinear Mixed Effects Models.  
R Core Team (2023) n.d. R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria. 
Van Breukelen, A.E., Aldridge M.A., Veerkamp R.F. and De Haas Y. (2022) J. Dairy Sci. 105: 

4256. 
Van Den Berg I., Nguyen T.V. Nguyen T.T.T., Pryce J.E., Nieuwhof G.J., MacLeod I.M. (2024) J. 

Dairy Sci. 107: 9591  


	SUMMARY
	INTRODUCTION
	MATERIALS AND METHODS
	RESULTS AND DISCUSSION

